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Abstract. Interquark confinement potential is calculated in the dual monopole Nambu–Jona–Lasinio model
with dual Dirac strings suggested in [2,3] as a functional of the dual Dirac string length. The calculation is
carried out by explicit integration over quantum fluctuations of a dual-vector field (monopole–antimonopole
collective excitation) around the Abrikosov flux line and string shape fluctuations. The contribution of
the scalar field (monopole–antimonopole collective excitation) exchange is taken into account in the tree
approximation because of the London limit regime. The dominant role of quantum fluctuations for the
formation of the linearly rising part of the confinement potential is argued.

1 Introduction

The dual monopole Nambu–Jona–Lasinio model (MNJL)
with dual Dirac strings as a continuum space-time anal-
ogy of compact quantum electrodynamics (CQED) [1] has
been formulated in [2–4]. As has been shown in [1], CQED
possesses the same nonperturbative phenomena as in low-
energy QCD. The MNJL model is based on a Lagrangian
that is invariant under magnetic U(1) symmetry, with
massless magnetic monopoles self-coupled through a lo-
cal four-monopole interaction [2,3]:

L(x) = χ̄(x)iγµ∂µχ(x) + G[χ̄(x)χ(x)]2

−G1[χ̄(x)γµχ(x)][χ̄(x)γµχ(x)], (1.1)

where χ(x) is a massless magnetic monopole field, and G
and G1 are positive phenomenological constants. Below we
will show that we have to choose G1 = G/4 for the self-
consistency of the theory in the one-loop approximation.

The magnetic monopole condensation accompanies the
creation of monopole–antimonopole (χ̄ χ) collective exci-
tations with the quantum numbers of a scalar Higgs meson
field ρ and a dual-vector field Cµ.

For the derivation of an effective Lagrangian, the ρ and
Cµ fields are introduced as cyclic variables.

L(x) = χ(x)iγµ∂µχ (x) − V(x), (1.2)

where V(x) is defined

−V(x) = χ(x) (−gγµCµ(x) − κρ(x))χ(x) − κ2

4G
ρ2(x)

? Supported by the Fonds zur Förderung der wis-
senschaftlichen Forschung, Project P12495-TPH

+
g2

4G1
Cµ(x)Cµ(x). (1.3)

Now we can show that the vacuum expectation value
(VEV) of the ρ field does not vanish. Toward this aim,
we have to derive the equation of motion of the ρ field by
varying the Lagrangian (1.1) with respect to the ρ field:

∂L(x)
∂ρ(x)

= −κχ(x)χ(x) − κ2

4G
ρ(x) = 0. (1.4)

This leads to

ρ(x) = −2G

κ
χ(x)χ(x). (1.5)

Taking the VEV of both sides of (1.5), we get

〈ρ(x)〉 = −2G

κ
〈χ(x)χ(x)〉 = −2G

κ
〈χ(0)χ(0)〉 , (1.6)

where 〈χ̄(0)χ(0)〉 is the magnetic monopole condensate.
Thus, the nonzero value of the VEV of the ρ field is re-
lated to the monopole condensation. In order to deal with
a physical scalar field, which we will call σ, we have to
subtract 〈ρ(x)〉, i.e., σ(x) = ρ(x) − 〈ρ(x)〉. It is conve-
nient to denote 〈ρ(x)〉 = M/κ, where M is proportional
to 〈χ̄(0)χ(0)〉,

M = −2G 〈χ̄(0)χ(0)〉 , (1.7)

and as will be shown below, M has the meaning of the
magnetic monopole mass in the superconducting phase.
(1.7) is the so-called gap equation, which testifies to the
appearance of the nonzero mass of the magnetic monopoles
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in the superconducting phase, and leads to the suppres-
sion of direct transitions between the physical scalar field
and the vacuum.

In terms of the σ field, the Lagrangian (1.2) reads

L(x) = χ(x) (iγµ∂µ − M)χ(x) − Ṽ(x), (1.8)

where now Ṽ(x) reads

−Ṽ(x) = χ(x) (−gγµCµ(x) − κσ(x))χ(x)

− κ2

4G
ρ2(x) +

g2

4G1
Cµ(x)Cµ(x). (1.9)

Integrating over the magnetic monopole fields χ̄(x) and
χ(x), we arrive at the effective Lagrangian

Leff(x) = L̃eff − κ2

4G
ρ2(x) +

g2

4G1
Cµ(x)Cµ(x), (1.10)

with L̃(x)eff defined as

L̃eff(x) = − i

〈
x

∣∣∣∣∣lnDet(i ∂̂ − M + Φ)

Det(i ∂̂ − M)

∣∣∣∣∣x
〉

. (1.11)

Here we have denoted Φ = −gγµCµ − κσ, and σ = ρ −
M/κ.

The effective Lagrangian L̃eff(x) can be represented by
an infinite series

L̃eff(x) =
∞∑

n=1

i
n

TrL

〈
x

∣∣∣∣∣
(

1

M − i ∂̂
Φ

)n∣∣∣∣∣x
〉

=
∞∑

n=1

L̃(n)
eff (x) . (1.12)

The index L means the evaluation of the trace over the
Lorentz indices. The effective Lagrangian L̃ (n)

eff (x) is given
by

L̃(n)
eff (x)

=
∫ n − 1∏

` = 1

d 4 x ` d 4 k `

(2 π) 4 e − i k 1 · x1 − . . . − i kn · x

×
(

− 1
n

1
16 π2

) ∫
d 4 k

π2i
TrL

{
1

M − k̂
Φ (x1)

× 1

M − k̂ − k̂ 1
Φ (x2) . . . Φ (xn − 1)

× 1

M − k̂ − k̂ 1 − . . . − k̂n − 1
Φ (x)

}
. (1.13)

at k 1 + k2 + . . .+ kn = 0 . The r.h.s. of (1.13) describes
the one-massive-monopole-loop diagram with n vertices.
The monopole-loop diagrams with two vertices (n = 2)
determine the kinetic term of the σ field and give the con-
tribution to the kinetic term of the Cµ field, while the dia-
grams with (n ≥ 3) describe the vertices of interactions of

the σ and the Cµ fields. In accordance with the prescrip-
tion given in [2,3], the effective Lagrangian L̃eff (x) should
be defined by the set of divergent one-massive-monopole-
loop diagrams with n = 1, 2, 3 and 4 vertices. The evalu-
ation of these diagrams gives

Leff (x)

=
1
2

κ2

8 π2 J2(M) ∂µ σ(x) ∂µ σ(x)

−M

[
κ

2 G
− κ

4 π2 J1(M)

]
σ(x) +

+
1
2

[
− κ2

2 G
+

κ2

4 π2 J1(M) − 4 M2 κ2

8 π2 J2(M)

]
σ2(x)

−2 M κ
κ2

8 π2 J2(M) σ3(x) − 1
2

κ2 κ2

8 π2 J2(M) σ4(x)

− g2

48 π2 J2(M) dCµν(x) dC(x)µν

+

[
g2

4G1
− g2

16 π2 [J1(M) + M2 J2(M)]

]

×Cµ(x) Cµ(x) , (1.14)

where we have defined dCµν(x) = ∂µCν(x) − ∂νCµ(x).
Then, J1(M) and J2(M) are the following quadratically
and logarithmically divergent integrals:

J1(M) =
∫

d 4 k

π2 i
1

(M2 − k2)

= Λ2 − M2ln

(
1 +

Λ2

M2

)
− Λ2

M2 + Λ2 ,

J2(M) =
∫

d 4 k

π2 i
1

(M2 − k2)2

= ln

(
1 +

Λ2

M2

)
− Λ2

M2 + Λ2 . (1.15)

In order to get the correct factors of the σ and Cµ field
kinetic terms, we have to set [2,3]

g2

12 π2 J2(M) = 1 ,
κ2

8 π2 J2(M) = 1 . (1.16)

So the coupling constants are connected by the relation
κ2 = 2g2/3 [2,3].

The effective Lagrangian (1.14) contains a term that is
linear in the σ field. This part of the effective Lagrangian
leads to direct transitions σ → vacuum. In the case of a
physical σ field, such transitions should be suppressed. In
order to suppress these transitions, we have to impose the
constraint

1
G

− 1
2π2 J1(M) = 0, (1.17)

where J1(M) can be connected with the monopole con-
densate via

〈χ̄(0)χ(0)〉 = − 1
4π2 MJ1(M). (1.18)
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Inserting (1.18) into (1.17), we arrive at the gap equation
(1.7)

The coefficient in front of the last term in (1.14) defines
the mass of the Cµ field:

M2
C =

g2

2G1
− g2

8 π2 [J1(M) + M2 J2(M)] (1.19)

Picking up the gap equation (1.7) and the constraint
(1.16), we bring the effective Lagrangian (1.14) to the form

Leff(x)

= −1
4

dCµν(x) dCµν(x) +
1
2

M2
C Cµ(x) Cµ(x)

+
1
2
∂µ σ(x) ∂µσ(x) − 1

2
M2

σσ2(x)

[
1 + κ

σ(x)
Mσ

]2

= −1
4

dCµν(x) dCµν(x) +
1
2

M2
C Cµ(x) Cµ(x)

+
1
2
∂µ σ(x) ∂µσ(x) − 1

2
M2

σσ2(x) + Lint[σ(x)], (1.20)

where Mσ = 2 M is the mass of the σ field, and Lint[σ(x)]
describes the self-interactions of the σ field

Lint[σ(x)] = −κ Mσ σ3(x) − 1
2
κ2 σ4(x). (1.21)

The gap equation, in turn, can be derived in the one-
monopole-loop approximation by using only the
Lagrangian (1.1)

χ̄(x){2iGTr[SF (0)] − 2iGSF (0) + 2iG1γ
µSF (0)γµ}χ(x)

= χ̄(x)

{
M

2π2 J1(M)

[
− 3

4
G − G1

]}
χ(x). (1.22)

Due to the prescription of the NJL model [5] and, corre-
spondingly, the MNJL model [2,3], the result of the cal-
culation of one-loop corrections should be equated to the
total mass of the fermion in the superconducting phase.
In the MNJL model, this is −M χ̄(x)χ(x). Equating the
r.h.s. of (1.22) to −M χ̄(x)χ(x), we get

χ̄(x)

{
M

2π2 J1(M)

[
− 3

4
G − G1

]}
χ(x)

= −M χ̄(x)χ(x). (1.23)

This leads to the relation

M =

(
3
4

G + G1

)
M

2π2 J1(M)

= −2

(
3
4

G + G1

)
〈χ̄(0)χ(0)〉 , (1.24)

where we have used (1.18). This is the gap equation also.
Since both gap equations (1.7) and (1.24) describe the

same quantity, i.e., the mass of the magnetic monopole
field in the superconducting phase, these gap equations
should give the same result. Equating these equations, we
get the relation G1 = G/4, which reduces the number of
input parameters.

2 Magnetic monopole Green functions

The evaluation of the confinement potential accounting
for contributions of quantum fluctuations of massive mag-
netic monopole fields χM (x) and the fields of the collective
excitations σ and Cµ is convenient to perform in terms of
the generating functional of the magnetic monopole Green
functions. The n- point magnetic monopole Green func-
tion can be defined as the VEV of the time-ordered prod-
uct of the massless magnetic monopole densities [2,3,6]:

G (x1, . . . , xn)
=< 0|T(χ̄(x1)Γ1χ(x1) . . . χ̄(xn) Γnχ (xn))|0 >conn. ,(2.1)

where Γi(i = 1, . . . , n) are the Dirac matrices. As has been
shown in [6], the vacuum expectation value (2.1) can be
represented in terms of the vacuum expectation values
of the densities of the massive magnetic monopole fields
χM (x) coupled to the fields of the collective excitations σ
and Cµ:

G(x1, . . . , xn)
=< 0|T(χ̄(x1)Γ1χ(x1) . . . χ̄(xn)Γnχ(xn))|0 >conn.

=(M)< 0|T
(
χ̄M (x1)Γ1χM (x1) . . . χ̄M (xn)ΓnχM (xn)

× exp i
∫

d4x{−gχ̄M (x)γνχM (x)Cν(x)

−κχ̄M (x)χM (x)σ(x) + Lint[σ(x)]}
)
|0 >(M)

conn. . (2.2)

Here |0 >(M) is the wave function of the nonperturbative
vacuum of the MNJL model in the condensed phase, and
|0 > the wave function of the perturbative vacuum of the
noncondensed phase.

The self-interactions Lint[σ(x)] provide σ-field loop
contributions and can be dropped out in the tree σ-field
approximation [2–4]. The tree σ-field approximation can
be used by keeping massive magnetic monopoles very heavy,
i.e., M � MC . This corresponds to the London limit
Mσ = 2 M � MC in the dual Higgs model with dual
Dirac strings [7–9]. The inequality Mσ � MC means also
that in the MNJL model, we deal with dual superconduc-
tivity of type II [4]. In the tree σ-field approximation, the
r.h.s. of (2.1) acquires the form

G(x1, . . . , xn)
=< 0|T(χ̄(x1)Γ1χ(x1) . . . χ̄(xn)Γnχ(xn))|0 >conn.

=(M)< 0|T
(
χ̄M (x1)Γ1χM (x1) . . . χ̄M (xn)ΓnχM (xn)

× exp i
∫

d4x
{

− gχ̄M (x)γνχM (x)Cν(x)

−κχ̄M (x)χM (x)σ(x)Big}
)
|0 >(M)

conn. . (2.3)

For the subsequent investigation, it is convenient to repre-
sent the r.h.s. of (2.3) in terms of the generating functional
of the monopole Green functions [2–4]

G(x1, . . . , xn) =
n∏

i=1

δ

δη(xi)
Γi

δ

δη̄(xi)
Z[η, η̄]

∣∣∣∣∣
η=η̄=0

, (2.4)
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where η̄(η) are the external sources of the massive mono-
pole (antimonopole) fields, and Z[η, η̄] is the generating
functional of the monopole Green functions defined by

Z[η, η̄]

=
1
Z

∫
DχMDχ̄MDCµDσ exp i

∫
d4x

×
[1
4

Fµν(x) Fµν(x) +
1
2

M2
C Cµ(x) Cµ(x)

+
1
2

∂µσ(x) ∂µσ(x) − 1
2

M2
σ σ2(x)

+χ̄M (x)(i γµ ∂µ − M − g γµ Cµ(x) − κ σ(x))χM (x)

+η̄(x) χM (x) + χ̄M (x) η(x) + Lfree quark(x)
]
. (2.5)

The normalization factor Z is defined by the condition
Z[0, 0] = 1. Then Lfree quark(x) is the kinetic term for the
quark and antiquark

Lfree quark(x) = −
∑

i=q,q̄

mi

∫
dτ

(
dXµ

i (τ)
dτ

dXν
i (τ)
dτ

gµν

)1/2

×δ(4)(x − Xi(τ)). (2.6)

In our consideration, quarks and antiquarks are classical
point-like particles with masses mq = mq̄ = m, electric
charges Qq = −Qq̄ = Q, and trajectories Xν

q (τ) and
Xν

q̄ (τ), respectively. The field strength Fµν(x) is defined
[2–4] as Fµν(x) = Eµν(x) − ∗dCµν(x), where dCµν(x) =
∂µCν(x) − ∂νCµ(x), and ∗dCµν(x) is the dual version,
i.e., ∗dCµν(x) = 1/2εµναβdCαβ(x) (ε0123 = 1). The dual
chrom electric field strength Eµν(x), induced by a dual
Dirac string, is defined following [2–4], as

Eµν(x) = Q

∫∫
dτdσ

(
∂Xµ

∂τ

∂Xν

∂σ
− ∂Xν

∂τ

∂Xµ

∂σ

)

×δ(4)(x − X), (2.7)

where Xµ = Xµ(τ, σ) represents the position of a point on
the world sheet swept by the string. The sheet is param-
eterized by internal coordinates −∞ < τ < ∞ and 0 ≤
σ ≤ π, so that Xµ(τ, 0) = Xµ

−Q(τ) and Xµ(τ, π) = Xµ
Q(τ)

represent the world lines of an antiquark and a quark
[2–4,6,7]. For the definition (2.7), the tensor field Eµν(x)
satisfies identically the equation of motion, ∂µFµν(x) =
Jν(x). The electric quark current Jν(x) is defined as

Jν(x) =
∑

i=q,q̄

Qi

∫
dτ

dXν
i (τ)
dτ

δ(4)(x − Xi(τ)). (2.8)

Hence, the inclusion of a dual Dirac string in terms of
Eµν(x) defined by (2.7) satisfies completely the dual elec-
tric Gauss law of Dirac′s extension of Maxwell′ s electro-
dynamics.

The ground state of the massive dual-vector field Cµ(x)
coupled to a dual Dirac string acquires the shape of the
Abrikosov flux line [2–4,7,8]

Cν [E(x)] = −
∫

d4x′ ∆(x − x′ ) ∂µ
∗Eµν(x′ ), (2.9)

where ∆(x − x′ ) is the Green function

∆(x − x′ ) =
∫

d4k

(2π)4
e−ik · (x − x′ )

M2
C − k2 − i0

. (2.10)

Integrating out the dual-vector field fluctuations cµ(x)
around the shape of the Abrikosov flux line, Cµ(x) =
Cµ[E(x)] + cµ(x), and the scalar σ field [4], we obtain the
generating functional of the monopole Green functions in
the following form:

Z[η, η̄] =
1
Z

∫
DχMDχ̄M exp i

∫
d4x[

Leff{χ̄M (x), χM (x), Cν [E(x)]}
+χ̄M (x)(i γµ ∂µ − M

−g γµ Cµ[E(x)])χM (x) + η̄(x) χM (x)

+χ̄M (x) η(x) + Lfree quark(x)
]
, (2.11)

where Leff{χ̄M (x), χM (x), Cν [E(x)]} reads

Leff{χ̄M (x), χM (x), Cν [E(x)]}
= Lstring{Cν [E(x)]} − g2

2M2
C

[χ̄M (x)γµχM (x)]

×[χ̄M (x)γµχM (x)] +
κ2

2M2
σ

[χ̄M (x)χM (x)]2. (2.12)

The Lagrangian of the dual Dirac string Lstring{Cν [E(x)]}
is defined as [3,4,8]∫

d4xLstring{Cν [E(x)]}

=
1
4

M2
C

∫ ∫
d4xd4yEµα(x)∆α

ν (x − y, MC)Eµν(y), (2.13)

where ∆α
ν (x − y, MC) = (gα

ν + 2∂α∂ν/M2
C)∆(x − y;MC).

The effective Lagrangian (2.12) integrated over the
massive monopole fields χ̄M (x) and χM (x) defines the
string energy, i.e., the interquark potential, as a functional
of the string shape. Thus, for the evaluation of the in-
terquark potential accounting for quantum fluctuations of
the massive magnetic monopole fields χM (x) and the fields
of the collective excitations σ and Cµ, we have to aver-
age only the effective Lagrangian (2.12) over the massive
monopole fields χ̄M (x) and χM (x).

3 Confinement potential

The interquark confinement potential W or the string en-
ergy we define as [2–4,6,7]

W = −
∫

d3x 〈Leff{χ̄M (x), χM (x), Cν [E(x)]}〉 , (3.1)

where the brackets assume the integration over the mas-
sive magnetic monopole fields

〈Leff{χ̄M (x), χM (x), Cν [E(x)]}〉
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=
1
Z

∫
DχMDχ̄MLeff{χ̄M (x), χM (x), Cν [E(x)]}

× exp i
∫

d4x
[
χ̄M (x)(iγµ∂µ − M − gγµCµ[E(x)])

×χM (x) + η̄(x)χM (x) + χ̄M (x)η(x)
]
. (3.2)

This equation can be reduced to the more simple form

W = −
∫

d3xLstring{Cν [E(x)]} +
∫

d3x (M) < 0|T

×
((

− g2

2M2
C

[χ̄M (x)γµχM (x)] [χ̄M (x)γµχM (x)]

+
κ2

2M2
σ

[χ̄M (x)χM (x)]2
)

(3.3)

× exp−ig
∫

d4y χ̄M (y) γµ Cµ[E(y)]χM (y)
)
|0 >(M).

The interaction caused by the integration over the σ-field
fluctuations gives a trivial constant contribution to the
energy of the string [4] and can be dropped out. In the
momentum representation of the vacuum expectation val-
ues, the energy of the string is then defined by [4]:

W = −
∫

d3xLstring{Cν [E(x)]} −
∫

d3x
g2

2M2
C

×
∫

d4k1

(2π)4i
Tr

{
1

M − k̂1 + gĈ[E(x)]
γµ

}

×
∫

d4k2

(2π)4i
Tr

{
γµ

1

M − k̂2 + gĈ[E(x)]

}
. (3.4)

The momentum integrals have been calculated in [4]. This
yields the energy of the string:

W = −
∫

d3xLstring{Cν [E(x)]}

−1
2

1
M2

C

(
g2

8π2 [J1(M) + M2J2(M)]

)2

×
∫

d3x Cµ[E(x)]Cµ[E(x)]. (3.5)

By using (1.7), (1.8), and (1.12), and the relations G1 =
G/4 and Mσ = 2 M , we bring up the coefficient of the
second term to the form

− g2

8π2 [J1(M) + M2J2(M)]

= M2
C − g2

2G1
= M2

C + 8 g2 〈χ̄χ〉
Mσ

. (3.6)

Thus, the energy of the string containing quantum fluc-
tuations of the scalar and dual-vector fields around the
shape of the Abrikosov flux line is given by

W = −
∫

d3xLstring{Cν [E(x)]} − 1
2

M2
C

(
1 +

8g2

M2
C

〈χ̄χ〉
Mσ

)2

×
∫

d3x Cµ[E(x)]Cµ[E(x)]. (3.7)

We perform the computation of the r.h.s. of (3.5) for the
static straight string of the length L directed along the z
axis. In this case, the electric field strength Eµν(x) does
not depend on time, and is given by [8]

~E(~x ) = ~ez Q δ(x) δ(y)

×
[
θ

(
z − 1

2
L

)
− θ

(
z +

1
2

L

)]
, (3.8)

where a quark and an antiquark are placed at ~XQ =
(0, 0, 1

2 L) and ~X−Q = (0, 0,−1/2 L). The unit vector ~ez

is directed along the z axis, and θ(z) is the step function.
The field strength (3.8) induces the dual-vector potential

〈
~C(~x)

〉
(3.9)

= − iQ
∫

d3k

4 π3

~k × ~ez

kz

1

M2
C + ~k 2

sin

(
kzL

2

)
ei

~k · ~x.

For the static straight string, the term in Eq. (3.7) reads

−
∫

d3xLstring{Cν [E(x)]}

= −1
4

M2
C

∫
d3x

∫
d3x′

∞∫
−∞

dx′
0

[
E0i(~x )

(
gi

j +
2

M2
C

× ∂2

∂xi∂xj

)
∆(x0 − x′

0, ~x − ~x ′, MC) E0j(~x ′) + Ei0(~x)

×
(
g0
0 +

2
M2

C

∂2

∂x0∂x0

)
∆(x0 − x′

0, ~x − ~x′, MC)E i0(~x′)

]

=
1
2

M2
C

∫
d3x

∫
d3x′ ~E(~x ) · ~E(~x ′ )

(
1 − 1

M2
C

∂2

∂z2

)

×∆(~x − ~x ′, MC)

=
1
2

Q2M2
C

L/2∫
−L/2

dz

L/2∫
−L/2

dz′
∞∫

−∞
dkz

(
1 +

k2
z

M2
C

)

×
∫

d2k⊥
(2π)3

eikz(z − z′ )

M2
C + ~k 2

⊥ + k2
z

=
Q2M2

C

4π3

∞∫
−∞

dkz

k2
z

sin2

(
kzL

2

)(
1 +

k2
z

M2
C

)

×
∫

d2k⊥
M2

C + ~k 2
⊥ + k2

z

=
Q2M2

C

4π2

∞∫
−∞

dkz

k2
z

sin2

(
kzL

2

)(
1 +

k2
z

M2
C

)

×
Λ2

⊥∫
0

dk2
⊥

M2
C + k2

⊥ + k2
z

, (3.10)
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where Λ⊥ is the cutoff in the plane perpendicular to the
world sheet swept by the string [2–4,7,8]. We identify Λ⊥
with the mass of the scalar field, i.e., Λ⊥ = Mσ = 2M
[2–4,7,8].

For a sufficiently long string, we can integrate over k2
⊥

and get

−
∫

d3xLstring{Cν [E(x)]}

=
Q2M2

C

4π2

∞∫
−∞

dkz

k2
z

sin2

(
kzL

2

)(
1 +

k2
z

M2
C

)

×
[
ln

(
1 +

M2
σ

M2
C

)
− ln

(
1 +

k2
z

M2
C

)]
, (3.11)

where we have neglected kz relative to Λ⊥. Dropping the
infinite constant contributions independent of L, we ob-
tain [8]:

−
∫

d3xLstring{Cν [E(x)]}

= L
Q2M2

C

8π

[
ln

(
1 +

M2
σ

M2
C

)
+ 2 E1(MCL)

− 2
MCL

(
1 − e−MCL

)]
− Q2

4π

e−MCL

L
, (3.12)

where E1(MCL) is the exponential integral function. For
the calculation of the integral over kz, we have used the
auxiliary integral

∞∫
−∞

dx
sin2 x

x2 ln

(
α2 +

x2

a2

)

= 2π lnα +
π

aα

(
1 − e−2aα

)
− 2π E1(2aα), (3.13)

where in (3.12), we have set α = 1 and a = MCL/2.
The first term proportional to L gives the string ten-

sion σ0 calculated in the tree approximation [7]:

σ0 =
Q2M2

C

8π
ln

(
1 +

M2
σ

M2
C

)
. (3.14)

The last term in (3.7) induced by the quantum fluctua-
tions of the dual-vector field Cµ around the shape of the
Abrikosov flux line can be reduced to the form [8]:

−1
2

M2
C

(
1 +

8g2

M2
C

〈χ̄χ〉
Mσ

)2 ∫
d3x Cµ[E(x)]Cµ[E(x)]

=
Q2M2

C

4π2

(
1 +

8g2

M2
C

〈χ̄χ〉
Mσ

)2 ∞∫
−∞

dkz

k2
z

sin2

(
kzL

2

)

×
[
ln

(
1 +

M2
σ

M2
C

)
− ln

(
1 +

k2
z

M2
C

)]

= L
Q2M2

C

8π

(
1 +

8g2

M2
C

〈χ̄χ〉
Mσ

)2[
ln

(
1 +

M2
σ

M2
C

)

+2E1(MCL) − 2
MCL

(
1 − e−MCL

)]
. (3.15)

Collecting the pieces together, we obtain the energy of the
dual Dirac string, the interquark potential, as a function
of the length of the string L:

W = L
Q2M2

C

4π

(
1 +

8g2

M2
C

〈χ̄χ〉
Mσ

+
32g4

M4
C

〈χ̄χ〉2
M2

σ

)

×
[
ln

(
1 +

M2
σ

M2
C

)
+ 2 E1(MCL)

− 2
MCL

(
1 − e−MCL

)]
− Q2

4π

e−MCL

L
. (3.16)

The term proportional to L describes a linearly rising in-
terquark potential leading to the quark confinement and
gives the expression for the string tension

σ =
Q2M2

C

4π

(
1 +

8g2

M2
C

〈χ̄χ〉
Mσ

+
32g4

M4
C

〈χ̄χ〉2
M2

σ

)

×ln

(
1 +

M2
σ

M2
C

)
. (3.17)

The last term in (3.15) are the Yukawa potential.
Matching the string tension (3.17) with the string ten-

sion σ0 calculated in the tree approximation (3.15), we
accentuate a tangible contribution of quantum fluctua-
tions of the dual-vector field Cµ around the shape of the
Abrikosov flux line. This agrees with the result obtained
in [8] in the dual Higgs model.

4 String shape fluctuations

The string shape fluctuations we usually define as Xµ →
Xµ + ηµ(X) [10,9], where ηµ(X) describes fluctuations
around the fixed surface S swept by the shape Γ and obeys
the constraint ηµ(X)|∂S = 0 [10,9] at the boundary ∂S
of the surface S. We perform the integration over the η
field around the shape of the static straight string, with
the length L tracing out the rectangular surface S with
the time-side T [10,9]. Allowing only fluctuations in the
plane perpendicular to the string world sheet and setting
ηt(t, z) = ηz(t, z) = 0 [10,9], we arrive at the fluctuation
action δ SN[ηx, ηy] [9,4]

δ SN[ηx, ηy] = −3Q2Λ2
⊥

32π

T/2∫
−T/2

dt

L/2∫
−L/2

dz[ηx(t, z)

×(−∆) ηx(t, z) + (x ↔ y)], (4.1)
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coming from the term
∫

d4xLstring{Cν [E(x)]} defined by
(2.13), where ∆ is the Laplace operator in two-dimensional
space-time:

∆ = − ∂2

∂t2
+

∂2

∂z2 . (4.2)

The term
∫

d4x Cµ[E(x)]Cµ[E(x)] in (3.5), induced by the
quantum fluctuations of the dual-vector Cµ and scalar σ
fields around the shape of the Abrikosov flux line, does
not contribute to the fluctuation action for the case of the
static straight string. In order to show this we use the
expression obtained in [4]:

δCµ[E(x)]Cµ[E(x)]

= Q2
∫∫

d3k

4π3

d3q

4π3

kxqx + kyqy

kzqz
sin

(
kzL

2

)
sin

(
qzL

2

)

× 1

M2
C + ~k 2

1
M2

C + ~q 2 ei (
~k + ~q) · ~x

×
(
ei [(kx + qx)ηx(t, z) + (ky + qy)ηy(t, z)] − 1

)
. (4.3)

The contribution to the fluctuation action is given by∫
d4x δCµ[E(x)]Cµ[E(x)]

= Q2
∫

d4x

∫∫
d3k

4π3

d3q

4π3

kxqx + kyqy

kzqz
sin

(
kzL

2

)

× sin

(
qzL

2

)
1

M2
C + ~k 2

1
M2

C + ~q 2 ei (
~k + ~q) · ~x

×
(
ei [(kx + qx)ηx(t, z) + (ky + qy)ηy(t, z)] − 1

)
. (4.4)

Integrating over x and y, we get∫
d4x δCµ[E(x)]Cµ[E(x)]

= Q2

T/2∫
−T/2

dt

L/2∫
−L/2

dz

∫∫
d3k

2π2

d3q

2π2

kxqx + kyqy

kzqz

× sin

(
kzL

2

)
sin

(
qzL

2

)
1

M2
C + ~k 2

1
M2

C + ~q 2

×ei (k0 + q0)t − i(kz + qz)z δ(kx + qx) δ(ky + qy)

×
(
ei [(kx + qx)ηx(t, z) + (ky + qy)ηy(t, z)] − 1

)
= 0. (4.5)

Thus, (4.1) defines completely the fluctuation action in-
duced by string shape fluctuations around a static straight
string with length L. As has been shown in [9], the fluc-
tuation action (4.1) gives a Coulomb-like universal contri-
bution [10] to the energy of the string:

Wstring−shape = −αstring

L
, (4.6)

where αstring = π/12 and αstring = π/3 for opened and
closed strings, respectively.

5 Conclusion

We have shown that in the MNJL model with dual Dirac
strings, the quantum fluctuations of a dual-vector field
Cµ and a scalar field σ around the shape of the Abrikosov
flux line give the interquark confinement potential in the
following form:

Wtot = L
Q2M2

C

4π

(
1 +

8g2

M2
C

〈χ̄χ〉
Mσ

+
32g4

M4
C

〈χ̄χ〉2
M2

σ

)

×
[
ln

(
1 +

M2
σ

M2
C

)
+ 2 E1(MCL) − 2

MCL

×
(

1 − e−MCL
)]

− Q2

4π

e−MCL

L
− αstring

L
, (5.1)

where αstring = π/12 and αstring = π/3 for opened and
closed strings, respectively. This interquark potential re-
sembles the result obtained in the dual Higgs model with
dual Dirac strings [7–9]. Unlike in the dual Higgs model
with dual Dirac strings [7], the mass of a dual-vector field
MC is not proportional to the order parameter 〈χ̄χ〉 and
does not vanish in the limit 〈χ̄χ〉 → 0. This is seen from
the mass formula [4],

Mσ (8 M2
C + 3 M2

σ) = −56g2 〈χ̄χ〉 , (5.2)

which can be derived from (1.2), and the gap equation
(1.7). Thus, in the MNJL model the dual-vector field does
not need a Goldstone boson as a longitudinal component.
This distinguishes the transition to the nonperturbative
superconducting phase in the MNJL from that in the dual
Higgs model. Indeed, in the MNJL model, this transition
does not accompany the appearance of Goldstone bosons.
The former is rather natural, since the starting U(1) mag-
netic symmetry in the MNJL model is global and unbro-
ken in the nonperturbative superconducting phase. Recall
that in the dual Higgs model, the magnetic U(1) sym-
metry is local and becomes spontaneously broken in the
superconducting phase.

Due to the independence of the mass of the dual-vector
field on the monopole condensate, the string tension σ0
calculated in the tree approximation does not depend on
the monopole condensate either. The mass of the Higgs
field Mσ replaced the cutoff Λ⊥, i.e., Λ⊥ = Mσ. The de-
pendence on the magnetic monopole condensate appears
by virtue of the contributions of the quantum field fluctu-
ations of the dual-vector Cµ and the scalar σ fields around
the shape of the Abrikosov flux line.

In the MNJL model, the contributions of quantum
fluctuations to the string tension are dominant in com-
parison with the contribution calculated at the classical
level. In order to make this much more transparent, one
uses (5.2) and replaces in the expression for the string
tension (3.17) the magnetic monopole condensate 〈χ̄χ〉 by
the masses of the σ and Cµ fields:

σ =

(
50
49

+
6
49

ξ2 +
9
49

ξ4

)
σ0, (5.3)
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where σ0 is the string tension calculated at the classical
level (3.14); then the value of the parameter ξ = Mσ/MC

specifies the type of superconductivity realized in the con-
densed phase. Indeed, if ξ ≥ √

2, the nonperturbative vac-
uum behaves like a dual superconductor of type II; other-
wise, at ξ <

√
2, it is a dual superconductor of type I [11].

For ξ =
√

2, we get σ = 2σ0. However, since in the Lon-
don limit, ξ � √

2, we predict σ � 2σ0. This confirms the
dominant role of quantum fluctuations of quantum fields
in the condensed phase for the formation of the confine-
ment potential.

This result supports the result obtained in the dual
Higgs model with dual Dirac strings [8]. However, in the
MNJL model, such a dominance is displayed much more
distinctly. Thus, for the consistent investigation of the su-
perconducting mechanism of the quark confinement
within the dynamics of magnetic monopoles and dual
Dirac strings, one cannot deal with a classical level only;
the contributions of quantum fluctuations of the quantum
fields in the condensed phase should be taken into account.

Then, it is shown that in the MNJL model, as well
as in the dual Higgs model with dual Dirac strings, the
string shape fluctuations in comparison with the quan-
tum fluctuations of the quantum fields in the condensed
phase do not influence the string tension, and induce only
a Coulomb-like universal contribution calculated earlier
for opened strings by Lüscher, et al. [10] and for closed
strings by Faber, et al. [9].
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